Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Guruswami, Venkatesan (Ed.)Relational problems (those with many possible valid outputs) are different from decision problems, but it is easy to forget just how different. This paper initiates the study of FBQP/qpoly, the class of relational problems solvable in quantum polynomial-time with the help of polynomial-sized quantum advice, along with its analogues for deterministic and randomized computation (FP, FBPP) and advice (/poly, /rpoly). Our first result is that FBQP/qpoly ≠ FBQP/poly, unconditionally, with no oracle - a striking contrast with what we know about the analogous decision classes. The proof repurposes the separation between quantum and classical one-way communication complexities due to Bar-Yossef, Jayram, and Kerenidis. We discuss how this separation raises the prospect of near-term experiments to demonstrate "quantum information supremacy," a form of quantum supremacy that would not depend on unproved complexity assumptions. Our second result is that FBPP ̸ ⊂ FP/poly - that is, Adleman’s Theorem fails for relational problems - unless PSPACE ⊂ NP/poly. Our proof uses IP = PSPACE and time-bounded Kolmogorov complexity. On the other hand, we show that proving FBPP ̸ ⊂ FP/poly will be hard, as it implies a superpolynomial circuit lower bound for PromiseBPEXP. We prove the following further results: - Unconditionally, FP ≠ FBPP and FP/poly ≠ FBPP/poly (even when these classes are carefully defined). - FBPP/poly = FBPP/rpoly (and likewise for FBQP). For sampling problems, by contrast, SampBPP/poly ≠ SampBPP/rpoly (and likewise for SampBQP).more » « less
-
Fawzi, Omar; Walter, Michael (Ed.)We prove that for any n-qubit unitary transformation U and for any r = 2^{o(n / log n)}, there exists a quantum circuit to implement U^{⊗ r} with at most O(4ⁿ) gates. This asymptotically equals the number of gates needed to implement just a single copy of a worst-case U. We also establish analogous results for quantum states and diagonal unitary transformations. Our techniques are based on the work of Uhlig [Math. Notes 1974], who proved a similar mass production theorem for Boolean functions.more » « less
An official website of the United States government
